
Contents

1 Module Fpu : Access to low level �oating point functions. 1

2 Module Fpu_rename_all : Aliases �oating point functions to their "constant"

counterparts. 6

3 Module Fpu_rename : Aliases �oating point functions to their "constant" coun-

terparts, except for "ordinary functions" 8

4 Module Interval : Interval library in OCAML. 9

1 Module Fpu : Access to low level �oating point functions.

This module depends on chcw.c. IT ONLY WORKS FOR INTEL PROCESSORS.
Almost all low level functions are implemented using the x87 functions and x87 rounding modes.

There are unfortunately a few problems to understand. The x87 is supposed to be able to return a
nearest value and a upper and a lower bound for each elementary operation it can perform. This
is not always true. Some functions such as cos(), sin() or tan() are not properly implemented
everywhere.

For example, for the angle a= 1.570 796 326 794 896 557 998 981 734 272 092 580 795 288
085 937 5 the following values are computed for cos(a), by (1) the MPFI library (with 128 bits
precision), (2) the x87 in low mode, (3) the x87 in nearest mode (default value for the C and Ocaml
library on 32 bits linux), (4) the x87 in high mode, (5) the SSE2 implementation (default value for
the C and Ocaml library on 64 bits linux):

(1) 6.123 233 995 736 765 886 130 329 661 375 001 464 640 377 798 836e-17
(2) 6.123 031 769 111 885 058 461 925 285 082 049 859 451 216 355 021e-17
(3) 6.123 031 769 111 886 291 057 089 692 912 995 815 277 099 609 375e-17
(4) 6.123 031 769 111 886 291 057 089 692 912 995 815 277 099 609 375e-17
(5) 6.123 233 995 736 766 035 868 820 147 291 983 023 128 460 623 387e-17
The upper bound (4) computed by the x87 is clearly incorrect, as it is lower than the correct

value computed by the MPFI library.
The value computed by the SSE2 (5) is much more precise than the one computed by the x87.

Unfortunately, there is no way to get an upper and lower bound value, and we are thus stuck with
the x87 for computing these (sometimes incorrect) bounds.

The problem here is that the value computed by the standard, C-lib (or ocaml) cos function
doesn't always lie in the lower/upper bound interval returned by the x87 functions, and this can be
a very serious problem when executing Branch and Bound algorithms which expect the mid-value
to be inside the lower/upper interval.

We solved the problem by rewritting the trigonometric functions in order to make them both
consistant and correct. We used the following property: when -pi/4≤a≤pi/4 the rounding in 64 bits
of the 80 bits low/std/high value returned by the x87 are correct. Moreover, when 0<a<2**53 then
(a mod (2Pi_low)) and (a mod (2Pi_high)) are in the same quadrant. Last, (a mod Pi/2_High)
≤ (a mod Pi/2) ≤ (a mod Pi/2_Low). With this implementation, the lower and upper bounds are
properly set and they are always lower (resp. higher) than the value computed by the standard cos

1

functions on 32 and 64 bits architecture. This rewritting has been done in assembly language and
is quite e�cient.

Keep in mind that values returned by the standard (C-lib or Ocaml) cos(), sin() or tan() functions
are still di�erent on 32 and 64 bits architecture. If you want to have a program which behaves
exactly in the same way on both architectures, you can use the Fpu module fcos, fsin or ftan

functions which always return the same values on all architectures, or even use the Fpu_rename or
Fpu_rename_all modules to transparently rename the �oating point functions.

The functions are quite e�cient (see below). However, they have a serious disadvantage com-
pared to their standard counterparts. When the compiler compiles instruction �a+.b�, the code of
the operation is inlined, while when it compiles �(fadd a b)�, the compiler generates a function call,
which is expensive.

Intel Atom 230 Linux 32 bits

• tan speed (10000000 calls):2.380149

• ftan speed (10000000 calls):2.528158

• cos speed (10000000 calls):1.804113

• fcos speed (10000000 calls):2.076129

• sin speed (10000000 calls):1.844116

• fsin speed (10000000 calls):1.972123

• +. speed (10000000 calls):0.604037

• fadd speed (10000000 calls):0.980062

• -. speed (10000000 calls):0.644040

• fsub speed (10000000 calls):0.980061

• *. speed (10000000 calls):0.604038

• fmul speed (10000000 calls):0.980061

• /. speed (10000000 calls):0.992062

• fdiv speed (10000000 calls):1.424089

• ** speed (10000000 calls):15.420964

• pow speed (10000000 calls):4.528283

• mod_�oat speed (10000000 calls):1.996125

• fmod speed (10000000 calls):1.236077

Intel 980X Linux 64 bits

• tan speed (10000000 calls):0.896056

2

• ftan speed (10000000 calls):0.472029

• cos speed (10000000 calls):0.520033

• fcos speed (10000000 calls):0.400025

• sin speed (10000000 calls):0.524033

• fsin speed (10000000 calls):0.400025

• +. speed (10000000 calls):0.068005

• fadd speed (10000000 calls):0.124008

• -. speed (10000000 calls):0.068004

• fsub speed (10000000 calls):0.120008

• *. speed (10000000 calls):0.068004

• fmul speed (10000000 calls):0.128008

• /. speed (10000000 calls):0.096006

• fdiv speed (10000000 calls):0.156010

• ** speed (10000000 calls):0.668041

• pow speed (10000000 calls):1.028064

• mod_�oat speed (10000000 calls):0.224014

• fmod speed (10000000 calls):0.152010

val ffloat : int -> float

val ffloat_high : int -> float

val ffloat_low : int -> float

�oat() functions. The �oat function is exact on 32 bits machine but not on 64 bits machine
with ints larger than 53 bits

val fadd : float -> float -> float

val fadd_low : float -> float -> float

val fadd_high : float -> float -> float

Floating point addition in nearest, low and high mode

val fsub : float -> float -> float

val fsub_low : float -> float -> float

val fsub_high : float -> float -> float

Floating point substraction in nearest, low and high mode

3

val fmul : float -> float -> float

val fmul_low : float -> float -> float

val fmul_high : float -> float -> float

Floating point multiplication in nearest, low and high mode

val fdiv : float -> float -> float

val fdiv_low : float -> float -> float

val fdiv_high : float -> float -> float

Floating point division in nearest, low and high mode

val fmod : float -> float -> float

Modulo (result is supposed to be exact)

val fsqrt : float -> float

val fsqrt_low : float -> float

val fsqrt_high : float -> float

Floating point square root in nearest, low and high mode

val fexp : float -> float

val fexp_low : float -> float

val fexp_high : float -> float

Floating point exponential in nearest, low and high mode

val flog : float -> float

val flog_low : float -> float

val flog_high : float -> float

Floating point log in nearest, low and high mode

val flog_pow : float -> float -> float

val flog_pow_low : float -> float -> float

val flog_pow_high : float -> float -> float

Computes x^y for 0 < x < in�nity and neg_in�nity < y < in�nity

val fpow : float -> float -> float

val fpow_low : float -> float -> float

val fpow_high : float -> float -> float

Computes x^y expanded to its mathematical limit when it exists

val fsin : float -> float

val fsin_low : float -> float

val fsin_high : float -> float

4

Computes sin(x) for x in]-2^63, 2^63[

val fcos : float -> float

val fcos_low : float -> float

val fcos_high : float -> float

Computes cos(x) for x in]-2^63, 2^63[

val ftan : float -> float

val ftan_low : float -> float

val ftan_high : float -> float

Computes tan(x) for x in]-2^63, 2^63[

val fatan : float -> float -> float

val fatan_low : float -> float -> float

val fatan_high : float -> float -> float

fatan x y computes atan2 y x

val facos : float -> float

val facos_low : float -> float

val facos_high : float -> float

arc-cosine functions

val fasin : float -> float

val fasin_low : float -> float

val fasin_high : float -> float

arc-sinus functions

val fsinh : float -> float

val fsinh_low : float -> float

val fsinh_high : float -> float

Computes sinh(x)

val fcosh : float -> float

val fcosh_low : float -> float

val fcosh_high : float -> float

Computes cosh(x)

val ftanh : float -> float

val ftanh_low : float -> float

val ftanh_high : float -> float

Computes tanh(x)

5

val is_neg : float -> bool

is_neg x returns if x has its sign bit set (true for -0.)

Below, we have functions for changing the rounding mode. The default mode for rounding is
NEAREST.

BE VERY CAREFUL: using these functions unwisely can ruin all your computations. Remem-
ber also that on 64 bits machine these functions won't change the behaviour of the SSE instructions.

When setting the rounding mode to UPWARD or DOWNWARD, it is better to set it imme-
diately back to NEAREST. However we have no guarantee on how the compiler will reorder the
instructions generated. It is ALWAYS better to write:

let a = set_high(); let res = 1./.3. in set_nearest (); res;;
The above code will NOT work on linux-x64 where many �oating point functions are imple-

mented using SSE instructions. These three functions should only be used when there is no other
solution, and you really know what tou are doing, and this should never happen. Please use the
regular functions of the fpu module for computations. For example prefer:

let a = fdiv_high 1. 3.;;
PS: The Interval module and the fpu module functions correctly set and restore the rounding

mode for all interval computations, so you don't really need these functions.
PPS: Please, don't use them. . .

val set_low : unit -> unit

Sets the rounding mod to DOWNWARD (towards minus in�nity)

val set_high : unit -> unit

Sets the rounding mod to UPWARD (towards in�nity)

val set_nearest : unit -> unit

Sets the rounding mod to NEAREST (default mode)

2 Module Fpu_rename_all : Aliases �oating point functions to their

"constant" counterparts.

As described in the Fpu module documentation, there are problems when mixing some C-lib or
ocaml native functions with interval programming on 64 bits machine.

The standard �oating point functions results will always lie in the low; high interval computed
by the Fpu module, but they are slightly di�erent on 32 and 64 bits machines.

Using Open Fpu_rename_all at the beginning of your program guarantees that �oating com-
putation will give the same results on 32 and 64 bits machines. This is not mandatory but might
help.

NB: while most transcendantal function are almost as fast, and sometimes faster than their
"standard" ocaml counterparts, +. -. *. and /. are much slower (from 50% to 100% depending on
the processor. If you want to rename transcendantal functions but not +. -. *. and /. then use the
Fpu_rename module.

val (+.) : float -> float -> float

6

Computes x + y

val (-.) : float -> float -> float

Computes x - y

val (/.) : float -> float -> float

Computes x / y

val (*.) : float -> float -> float

Computes x * y

val mod_float : float -> float -> float

Computes x mod y

val sqrt : float -> float

square root function

val log : float -> float

log function

val exp : float -> float

exp function

val (**) : float -> float -> float

Computes x^y

val cos : float -> float

Computes cos(x) for x in [-2^63, 2^63]

val sin : float -> float

Computes sin(x) for x in [-2^63, 2^63]

val tan : float -> float

Computes tan(x) for x in [-2^63, 2^63]

val asin : float -> float

arc-sinus function

val acos : float -> float

arc-cosine function

val atan2 : float -> float -> float

atan2 function

val atan : float -> float

7

arc-tan function

val cosh : float -> float

cosh function

val sinh : float -> float

sinh function

val tanh : float -> float

tanh function

3 Module Fpu_rename : Aliases �oating point functions to their

"constant" counterparts, except for "ordinary functions"

As described in the Fpu module documentation, there are problems when mixing some C-lib or
ocaml native functions with interval programming on 64 bits machine.

The standard �oating point functions results will always lie in the low; high interval computed
by the Fpu module, but they are slightly di�erent on 32 and 64 bits machines.

Using Open Fpu_rename at the beginning of your program guarantees that �oating computation
will give the same results on 32 and 64 bits machines for all transcendantal functions but not for
ordinary arithmetic functions.

NB: while most transcendantal function are almost as fast, and sometimes faster than their
"standard" ocaml counterparts, +. -. *. and /. are much slower (from 50% to 100% depending on
the processor). If you want to rename also +. -. *. and /. then use the Fpu_rename_all module.

val mod_float : float -> float -> float

Computes x mod y

val sqrt : float -> float

square root function

val log : float -> float

log function

val exp : float -> float

exp function

val (**) : float -> float -> float

Computes x^y

val cos : float -> float

Computes cos(x) for x in [-2^63, 2^63]

val sin : float -> float

8

Computes sin(x) for x in [-2^63, 2^63]

val tan : float -> float

Computes tan(x) for x in [-2^63, 2^63]

val asin : float -> float

arc-sinus function

val acos : float -> float

arc-cosine function

val atan2 : float -> float -> float

atan2 function

val atan : float -> float

arc-tan function

val cosh : float -> float

cosh function

val sinh : float -> float

sinh function

val tanh : float -> float

tanh function

4 Module Interval : Interval library in OCAML.

ONLY FOR INTEL PROCESSORS.
All operations use correct rounding.
It is not mandatory, but still wise, to read the documentation of the Fpu module
WARNING: even if some functions have been associated with operators, such as the interval

addition which is associated with the +$ operator, the priority order between +, * and functions is
not maintained. You HAVE to use parenthesis if you want to be sure that a +$ b *$ c is properly
computed as a +$ (b *$ c).

This library has been mainly designed to be used in a branch and bound optimization algorithm.
So, some choices have been made:

• NaN is never used. We either extend functions by pseudo continuity or raise exceptions.
For example, {low=2.;high=3.} /$ {low=0.;high=2.} returns {low=1.;high=Inf}, while
{low=2.;high=3.} /$ {low=0.;high=0.} or {low=0.;high=0.} /$ {low=0.;high=0.} raise
a failure.

• Intervals [+Inf,+Inf] or [-Inf,-Inf] are never used and never returned.

9

• When using a �oat in the following operations, it must never be equal to +Inf or -Inf or Nan

• Functions such as log, sqrt, acos or asin are restricted to their de�nition domain but raise
an exception rather than returning an empty interval: for example sqrt_I {low=-4;high=4}

returns {low=0;high=2} while sqrt_I {low=-4;high=-2} will raise an exception.

Another design choice was to have non mutable elements in interval structure, and to maintain
an "ordinary" syntax for operations, such as �let a = b+$c in� thus mapping interval computation
formula on airthmetic formula. We could have instead chosen to have mutable elements, and to
write for example (add_I_I a b c) to perform �a=b+$c�. The �rst choice is, to our point of view,
more elegant and easier to use. The second is more e�cient, especially when computing functions
with many temporary results, which force the GC to create and destroy lot of intervals when using
the implementation we chose. Nothing's perfect.

The library is implemented in x87 assembly mode and is quite e�cient (see below).
Intel Atom 230 Linux 32 bits:

• ftan speed (10000000 calls):2.528158

• fcos speed (10000000 calls):2.076129

• fsin speed (10000000 calls):1.972123

• tan_I speed (10000000 calls):4.416276

• cos_I speed (10000000 calls):4.936308

• sin_I speed (10000000 calls):5.396338

• fadd speed (10000000 calls):0.980062

• fsub speed (10000000 calls):0.980061

• fmul speed (10000000 calls):0.980061

• fdiv speed (10000000 calls):1.424089

• +$ speed (10000000 calls):1.656103

• -$ speed (10000000 calls):1.636103

• *$ speed (10000000 calls):4.568285

• /$ speed (10000000 calls):4.552285

Intel 980X Linux 64 bits:

• ftan speed (10000000 calls):0.472029

• fcos speed (10000000 calls):0.400025

• fsin speed (10000000 calls):0.400025

• tan_I speed (10000000 calls):0.752047

10

• cos_I speed (10000000 calls):1.036065

• sin_I speed (10000000 calls):1.104069

• fadd speed (10000000 calls):0.124008

• fsub speed (10000000 calls):0.120008

• fmul speed (10000000 calls):0.128008

• fdiv speed (10000000 calls):0.156010

• +$ speed (10000000 calls):0.340021

• -$ speed (10000000 calls):0.332021

• *$ speed (10000000 calls):0.556035

• /$ speed (10000000 calls):0.468029

type interval = {

low : float ;

low bound

high : float ;

high bound

}

The interval type. Be careful however when creating intervals. For example, the following
code: let a = {low=1./.3.;high=1./.3.} creates an interval which does NOT contain the
mathematical object 1/3.

If you want to create an interval representing 1/3, you have to write let a = 1. /.$

{low=3.0;high=3.0} because rounding will then be properly set

val zero_I : interval

Neutral element for addition

val one_I : interval

Neutral element for multiplication

val pi_I : interval

pi with bounds properly rounded

val e_I : interval

e with bounds properly rounded

val printf_I :

(float -> string, unit, string) Pervasives.format ->

interval -> unit

11

Prints an interval with the same format applied to both endpoints. Formats follow the same
speci�cation than the one used for the regular printf function

val fprintf_I :

Pervasives.out_channel ->

(float -> string, unit, string) Pervasives.format ->

interval -> unit

Prints an interval into an out_channel with the same format applied to both endpoints

val sprintf_I :

(float -> string, unit, string) Pervasives.format ->

interval -> string

Returns a string holding the interval printed with the same format applied to both endpoints

val float_i : int -> interval

Returns the interval containing the �oat conversion of an integer

val compare_I_f : interval -> float -> int

compare_I_f a x returns 1 if a.high<x, 0 if a.low<=x<=a.high and -1 if x<a.low

val size_I : interval -> float

size_I a returns a.high-a.low

val sgn_I : interval -> interval

sgn_I a returns {low=float (compare a.low 0.);high=float (compare a.high 0.)}

val truncate_I : interval -> interval

truncate_I a returns {low=floor a.low;high=ceil a.high}

val abs_I : interval -> interval

abs_I a returns {low=a.low;high=a.high} if a.low>=0., {low=-a.high;high=-a.low} if
a.high<=0., and {low=0.;high=max -a.low a.high} otherwise

val union_I_I : interval -> interval -> interval

union_I_I a b returns {low=min a.low b.low;high=max a.high b.high}

val max_I_I : interval -> interval -> interval

max_I_I a b returns {low=max a.low b.low;high=max a.high b.high}

val min_I_I : interval -> interval -> interval

min_I_I a b returns {low=min a.low b.low;high=min a.high b.high}

val (+$) : interval -> interval -> interval

a +$ b returns {low=a.low+.b.low;high=a.high+.b.high}

12

val (+$.) : interval -> float -> interval

a +$. x returns {low=a.low+.x;high=a.high+.x}

val (+.$) : float -> interval -> interval

x +.$ a returns {low=a.low+.x;high=a.high+.x}

val (-$) : interval -> interval -> interval

a -$ b returns {low=a.low-.b.high;high=a.high-.b.low}

val (-$.) : interval -> float -> interval

a -$. x returns {low=a.low-.x;high=a.high-.x}

val (-.$) : float -> interval -> interval

x -.$ a returns {low=x-.a.low;high=x-.a.high}

val (~-$) : interval -> interval

�-$ a returns {low=-a.high;high=-a.low}

val (*$.) : interval -> float -> interval

a *$. x multiplies a by x according to interval arithmetic and returns the proper result. If
x=0. then zero_I is returned

val (*.$) : float -> interval -> interval

x *$. a multiplies a by x according to interval arithmetic and returns the proper result. If
x=0. then zero_I is returned

val (*$) : interval -> interval -> interval

a *$ b multiplies a by b according to interval arithmetic and returns the proper result. If
a=zero_I or b=zero_I then zero_I is returned

val (/$.) : interval -> float -> interval

a /$. x divides a by x according to interval arithmetic and returns the proper result.
Raise Failure "/$." if x=0.

val (/.$) : float -> interval -> interval

x /.$ a divides x by a according to interval arithmetic and returns the result. Raise
Failure "/.$" if a=zero_I

val (/$) : interval -> interval -> interval

a /$ b divides the �rst interval by the second according to interval arithmetic and returns
the proper result. Raise Failure "/$" if b=zero_I

val mod_I_f : interval -> float -> interval

mod_I_f a f returns a mod f according to interval arithmetic et ocaml mod_�oat
de�nition. Raise Failure "mod_I_f" if f=0.

13

val inv_I : interval -> interval

inv_I a returns 1. /.$ a. Raise Failure "inv_I" if a=zero_I

val sqrt_I : interval -> interval

sqrt_I a returns {low=sqrt a;high=sqrt b} if a>=0., {low=0.;high=sqrt b} if a<0.<=b.
Raise Failure "sqrt_I" if b<0.

val pow_I_i : interval -> int -> interval

Pow_I_i a n with n integer returns interval a raised to nth power according to interval
arithmetic. If n=0 then {low=1.;high=1.} is returned. Raise Failure "pow_I_f" if n<=0
and a=zero_I. Computed with exp-log in base2

val (**$.) : interval -> float -> interval

a **$. f returns interval a raised to f power according to interval arithmetic. If f=0. then
{low=1.;high=1.} is returned. Raise Failure "**$." if f<=0. and a=zero_I or if f is

not an integer value and a.high<0.. Computed with exp-log in base2

val (**$) : interval -> interval -> interval

a **$ b returns interval a raised to b power according to interval arithmetic, considering the
restriction of x power y to x ≥ 0. Raise Failure "**$" if a.high < 0 or (a.high=0. and

b.high<=0.)

val (**.$) : float -> interval -> interval

x **.$ a returns �oat x raised to interval a power according to interval arithmetic,
considering the restiction of x power y to x ≥ 0. Raise Failure "**.$" if x < 0 and a.high

<= 0

val log_I : interval -> interval

log_I a returns {low=log a.low; high=log a.high} if a.low>0., {low=neg_infinity;
high=log a.high} if a.low<0<=a.high. Raise Failure "log_I" if a.high<=0.

val exp_I : interval -> interval

exp_I a returns {low=exp a.high;high=exp b.high}

val cos_I : interval -> interval

cos_I a returns the proper extension of cos to arithmetic interval Returns [-1,1] if one of the
bounds is greater or lower than +/-2**53

val sin_I : interval -> interval

sin_I a returns the proper extension of sin to arithmetic interval Returns [-1,1] if one of the
bounds is greater or lower than +/-2**53

val tan_I : interval -> interval

tan_I a returns the proper extension of tan to arithmetic interval Returns [-Inf,Inf] if one of
the bounds is greater or lower than +/-2**53

14

val acos_I : interval -> interval

acos_I a raise Failure "acos_I" if a.low>1. or a.high<-1., else returns {low=if
a.high<1. then acos a.high else 0; high=if a.low>-1. then acos a.low else

pi}. All values are in [0,pi].

val asin_I : interval -> interval

asin_I a raise Failure "asin_I" if a.low>1. or a.high<-1. else returns {low=if
a.low>-1. then asin a.low else -pi/2; high=if a.low<1. then asin a.high else

pi/2}. All values are in [-pi/2,pi/2].

val atan_I : interval -> interval

atan_I a returns {low=atan a.low;high=atan a.high}

val atan2mod_I_I : interval -> interval -> interval

atan2mod_I_I y x returns the proper extension of interval arithmetic to atan2 but with
values in [-pi,2 pi] instead of [-pi,pi]. This can happen when y.low<0 and y.high>0 and
x.high<0: then the returned interval is {low=atan2 y.high x.high;high=(atan2 y.low

x.high)+2 pi}. This preserves the best inclusion function possible but is not compatible
with the standard de�nition of atan2

val atan2_I_I : interval -> interval -> interval

Same function as above but when y.low<0 and y.high>0 and x.high<0 the returned interval
is [-pi,pi]. This does not preserve the best inclusion function but is compatible with the
atan2 regular de�nition

val cosh_I : interval -> interval

cosh_I is the proper extension of interval arithmetic to cosh

val sinh_I : interval -> interval

sinh_I is the proper extension of interval arithmetic to sinh

val tanh_I : interval -> interval

tanh_I is the proper extension of interval arithmetic to tanh

val size_max_X : interval array -> float

Computes the size of the largest interval of the interval vector

val size_mean_X : interval array -> float

Computes the mean of the size of intervals of the interval vector

val printf_X :

(float -> string, unit, string) Pervasives.format ->

interval array -> unit

Prints an interval vector with the same format applied to all endpoints.

15

val fprintf_X :

Pervasives.out_channel ->

(float -> string, unit, string) Pervasives.format ->

interval array -> unit

Prints an interval vector into an out_channel with the same format applied to all endpoints

val sprintf_X :

(float -> string, unit, string) Pervasives.format ->

interval array -> string

Returns a string holding the interval vector printed with the same format applied to all
endpoints

val print_X : interval array -> unit

Deprecated

val print_I : interval -> unit

Deprecated

val size_X : interval array -> float

Deprecated

val size2_X : interval array -> float

Deprecated

val (<$.) : interval -> float -> int

Deprecated

val pow_I_f : interval -> float -> interval

Deprecated

val pow_I_I : interval -> interval -> interval

Deprecated

16

