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X chromosome inactivation (XCI) is the process by which the

dosage imbalance of X-linked genes between XX females and

XY males is functionally equalized. XCI modulates the

phenotype of females carrying mutations in X-linked genes, as

observed in X-linked dominant male-lethal disorders such as

oral-facial-digital type I (OFDI) and microphthalmia with linear

skin-defects syndromes. The remarkable degree of

heterogeneity in the XCI pattern among female individuals, as

revealed by the recently reported XCI profile of the human X

chromosome, could account for the phenotypic variability

observed in these diseases. Furthermore, the recent

characterization of a murine model for OFDI shows how

interspecies differences in the XCI pattern between Homo

sapiens and Mus musculus result in discrepancies between the

phenotypes observed in patients and mice.
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Introduction
X chromosome inactivation (XCI) is the process by which

one of the two X chromosomes becomes transcriptionally

inactive in each somatic cell of mammalian females. The

purpose of this dosage compensation mechanism is to

functionally equalize the gene dosage imbalance of X-

linked genes between XX females and XY males. Inter-

estingly, some genes (approximately 15%) escape XCI,

and are expressed from both the active and the inactive X

chromosomes in females [1��]. The XCI pattern of genes

(i.e. monoallelic as apposed to biallelic expression) might

vary in various respects: among individuals within the

same species [1��] (see also the review by CM Valley and

HF Willard [2], this issue); among different species, such

as human and mouse (see the example of the OFD1 gene,

below); or among different tissues — although this has not
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been formally demonstrated. The choice of which of the

two X chromosomes becomes inactive is completely

random in a normal situation and, once initiated, is stably

propagated to all daughter cells. This process has impor-

tant implications for the effects seen in diseases that are

due either to mutations in X-linked genes or to numerical

or structural anomalies of the X chromosome. An impor-

tant consequence of XCI is that heterozygous females are

a mosaic of two populations of cells that have either the

wild type or the disease allele active. In principle, in

heterozygous female individuals carrying mutations in X-

linked genes, the ratio of the two types of cells should be

approximately 50:50; however, skewing of XCI can occur,

thereby altering this ratio. Skewed XCI can be due to

either positive or negative cell selection mechanisms.

This can modulate the expression of disease manifesta-

tions of X-linked recessive disorders in females. Different

degrees of skewing can also be responsible for the vari-

able severity of the phenotypes in women carrying X-

linked dominant mutations. Familial skewing of XCI has

also being described [3]. A schematic representation of

the effects of cell selection that lead to skewed XCI is

depicted in Figure 1.

In this review, we focus on the influence that XCI has on

the phenotypic expression of X chromosome mutations in

female individuals. To illustrate this, we use the example

of X-linked dominant male-lethal disorders, such as oral–

facial–digital type I (OFDI) and microphthalmia with

linear skin-defects (MLS) syndromes, in which XCI

might play a role in the variability of expression of the

disease phenotypes. In addition, we discuss how differ-

ences between Homo sapiens and Mus musculus in the X-

inactivation status could account for discrepancies

between the phenotypes observed in the patients and

those of the corresponding murine models.

X-linked dominant male-lethal disorders
An X-linked disorder is described as dominant if it is

expressed in heterozygotes. A subgroup of X-linked

dominant disorders includes those characterized by male

lethality or reduced male-viability. Table 1 lists all the

disorders that fit into this category, including those recog-

nized more recently, and summarizes their main features,

as well as the pattern of XCI typically observed in

patients. The corresponding gene has been identified

for six of these disorders. According to studies performed

in cultured cells, two of these genes appear to escape

and four appear to be subject to XCI. Murine models are

available for some of these diseases. A summary of the

information available on these genes is reported in
www.sciencedirect.com
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Figure 1

Schematic representation of XCI in female somatic cells. In normal conditions, the ratio of the two cell types (carrying the active and the

inactive X chromosomes) is approximately 50:50, but in females with X-linked dominant disorders this ratio can be different because of a

disadvantage for cells expressing a mutant X-linked allele. Divergence from the 50:50 ratio, known as skewing of XCI, can be different in

various tissues and in different developmental stages, and can vary among individuals, causing a variable severity of the phenotype observed.

For disorders such as MLS, OFCD, ODPD and IP, affected females usually have totally skewed patterns of XCI, in favour of an active wild

type X chromosome. Cell selection usually affects only those cell lines in which the disease gene is expressed [43]. Abbreviations: IP,

Incontinentia pigmenti; ODPD, terminal osseous dysplasia and pigmentary defects; OFCD, oculo-facio-cardio-dental syndrome.
Table 2. In some cases, the disease phenotype is clearly

related to the function of the corresponding gene (e.g.

OFD1). In other cases, no obvious relationship could be

observed. For example, there are situations in which the

gene is ubiquitously expressed and appears to be impor-

tant in all cells, despite the disease having a highly ‘tissue-

specific’ phenotype. This apparent discrepancy might be

related to the different ability of each tissue to cope with

the presence of dying or suffering cells in which the X

chromosome carrying the wild type allele is inactivated.

It is likely that XCI plays a major role in modulating the

severity of the phenotypes of all these diseases.

Oral–facial–digital type I syndrome

The oral–facial–digital syndromes are a heterogeneous

group of disorders characterized by defects in the face,

oral cavity and digits. OFD type I (Online Mendelian

Inheritance in Man (OMIM) 311200) can be recognized

by X-linked dominant inheritance with embryonic male

lethality [4,5] and by the presence of polycystic kidney,

which has not been found in the other types of OFD

syndromes [6,7]. The central nervous system is involved

in 40% of OFDI individuals, who display mental retarda-

tion, hydrocephalus and morphological anomalies [8–10].

A high degree of phenotypic variability, even within the

same family, has been described for this disease.
www.sciencedirect.com
Only a few exceptional OFDI male cases have been

described to date: a patient with Klinefelter syndrome

[11]; a 34-week live-born male — who, however, devel-

oped cardiac failure and died 21 hours after delivery —

from a family displaying a clear X-linked dominant

inheritance of the disease [12]; and a newborn male born

at term, but who died 4 hours after birth with typical signs

of OFDI, including cystic kidneys [13].

The OFD1 gene encodes a 1011 amino acid protein,

which is expressed during development and in adult

tissues in all the structures affected in this syndrome

[14,15]. Experiments performed in somatic cell hybrids

suggest that the human gene escapes XCI [1��,14],

whereas there is evidence that the Ofd1 gene is subject

to XCI in mouse [16]. OFD1 is thus an example of a gene

that shows interspecies differences in its pattern of XCI.

We hypothesize that the evidence obtained in somatic

cell hybrids demonstrating that OFD1 escapes XCI does

not reflect the situation of all other tissues, in which OFD1
might undergo XCI, at least partially.

Most of the OFD1 mutations identified to date in patients

[15,17,18,19�] lead to a premature truncation of the pro-

tein in its N-terminal region and are therefore predicted

to act with a loss-of-function mechanism. However, the

possibility that truncated OFD1 protein has a dominant–
Current Opinion in Genetics & Development 2006, 16:254–259
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Table 1

X-linked dominant male-lethal disorders.

Disease Locus name OMIM Clinical description XCI in patients

Chondrodysplasia

punctata 2

CDPX2 302960 Skin defects and skeletal abnormalities, including short stature,

rhizomelic shortening of the limbs, epiphyseal stippling,

and craniofacial defects

Random

Congenital hemidysplasia

with ichthyosiform

erythroderma and limb

defectsa

CHILDa 308050 Inflammatory nevus with striking lateralization and strict midline

demarcation, as well as ipsilateral hypoplasia of the body

Random in one

patient analyzed

Oculo-facio-cardio-dental OFCD 300166 Facial abnormality, cataract, microphthalmia, teeth abnormalities,

and cardiac septal defects

Skewed

Terminal osseous

dysplasia and pigmentary

defects

ODPD 300244 Abnormal and delayed ossification of bones of hands and feet,

brachydactyly, camptodactyly and clinodactyly. Digital

fibromatosis. Pigmentary skin-lesions on the face and scalp,

dysmorphic features including hypertelorism, and multiple frenula.

Skewed

Retta RTTa 312750 Autism, dementia, ataxia, and loss of purposeful hand-use Random

Incontinentia Pigmentia IPa 308300 Abnormality of skin pigmentation associated with a variety of

malformations of the eye, teeth, skeleton and heart etc.

Skewed

Oral–facial–digital type I OFD1 311200 Orofaciodigital abnormalities and cystic kidneys Nonrandom in

30%

Microphthalmia with

linear skin-defects

MLS 309801 Irregular linear areas of erythematous skin hypoplasia, involving

the head and neck, microphthalmia, corneal opacities. Also

associated cardiac defects and central nervous system

abnormalities

Skewed

Aicardi AIC 304050 Agenesis of the corpus callosum, with flexion spasms and

coriorethinal abnormalities

Preferentially

random

Goltz FDH 305600 Atrophy and linear pigmentation of the skin, herniation of fat

through the dermal defects, and multiple papillomas of the

mucous membranes or skin. Digital, oral and ocular anomalies

and mental retardation can be present

Skewed in two

patients

analyzed

a Can be present with reduced male viability. Abbreviations: AIC, Aicardi; CDPX2, chondrodysplasia punctata 2; CHILD, congenital

hemidysplasia with ichthyosiform erythroderma and limb defects; FDH, focal dermal hypoplasia; IP, incontinentia pigmenti; MLS,

microphthalmia with linear skin-defects; ODPD, terminal osseous dysplasia and pigmentary defects; OFCD, oculo-facio-cardio-dental;

OFDI, oral–facial–digital type I; RTT, Rett syndrome.
negative effect on the wild type protein has not been

formally ruled out. In the case of genes escaping XCI, it

has been shown that the allele located on the inactive X

chromosome has a lower level of expression compared

with that of the gene located on the active one. Therefore,
Table 2

Features of genes responsible for X-linked dominant male-lethal diso

Gene Locus name Gene features

OFD1 [15] OFDI Required for primary cilia formation

and left–right symmetry

MECP2 [32] RTT Methyl-CpG-binding protein 2,

possibly involved in DNA methylation

EBP [35,36] CDPX2 Emopamil-binding protein involved

in cholesterol biosynthesis

NEMO [37] IP Inhibitor of nuclear factor kB kinase

b subunit.

BCOR [40�] OFCD BCL-6-interacting co-repressor.

Functions as transcriptional

co-repressor

NSDHL [41] CHILD NAD(P)H steroid dehydrogenase-

like protein involved in cholesterol

biosynthesis

a Analyzed using somatic cell hybrids [1��]. Abbreviations: BCOR, BCL6 c

methyl-CpG-binding protein 2; NA, not available; NEMO, NF-kB essential
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for most of these genes, the ‘escape’ from XCI is not

complete [20��]. This is due to the generally lower levels

of expression of the inactive X-alleles compared with

those of the corresponding active X-alleles. In addition,

there might be sex-specific effects — such as hormonal
rders.

XCI in humansa XCI in the mouse Mouse model

Escaping Inactivated [16] [22��]

Inactivated Inactivated [33] [34]

Inactivated Inactivated [35] Td [35]

Escape Presumably inactivated [38,39]

Inactivated NA NA

Inactivated NA Bpa, Str [42]

o-repressor; EBP, emopamil-binding protein; MECP2,

modulator; NSDHL, NAD(P)H steroid dehydrogenase-like protein.

www.sciencedirect.com
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effects — on gene expression. The high degree of phe-

notypic variability observed in OFDI patients could be

related to the variable level of expression from inactive X-

chromosomes of the OFD1 gene in females. Alternatively,

phenotypic heterogeneity among females might result

from a variable pattern of XCI [19�] (B Franco,

unpublished).

Previous studies have shown that the protein encoded by

OFD1 is centrosomal and is located at the basal body of

primary cilia [18,21]. A mouse model for this genetic

disorder has recently been generated and reveals that

complete absence of Ofd1 in hemizygous males causes

early developmental defects, mainly neural tube, heart

and laterality defects, the latter owing to absence of cilia

in the embryonic node. Heterozygous females die at

birth, displaying defects of the head, the oral cavity

and the skeleton [22��]. They also develop kidney cysts

in which cilia were found to be absent. These data

identified Ofd1 as a factor required for cilia formation,

and definitively place OFDI in the group of genetic

disorders associated to ciliary dysfunction.

Interestingly, the effect of Ofd1 disruption in the mouse

was revealed to be more severe than in humans: newborn

females do not survive beyond birth, they display cystic

kidney in 100% of cases and have additional features (e.g.

skeletal and vascular defects) not observed in OFD type I

patients. Moreover, polydactyly is invariably present,

whereas in humans it is less frequent than brachydactyly

or syndactyly. Figure 2 displays examples of the
Figure 2

Phenotypic abnormalities observed at P0 in Ofd1D4–5/+ females. (a) A newb

and facial region, shortened, polydactylous limbs and enlarged cystic kidne

(c) Freshly dissected palates from heterozygous mutant mice always show

staining reveals the presence of supernumerary digits (polydactyly). (e) Kidn

indicate the presence of cystic kidneys. Abbreviations: Cy, cyst; T, tuft indic

permission from Macmillan Publisher Ltd; Nature Genetics [22��].
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phenotypic abnormalities observed in 100% of the

Ofd1D4–5/+ female mutants analyzed to date.

Obvious differences between H. sapiens and M. musculus
could account for this discrepancy, although a possible

explanation could be related to the difference of the XCI

status for the OFD1 and Ofd1 genes in the two respective

species. In humans, the ‘escape’ of OFD1, at least par-

tially, from XCI results in biallelic expression, with

human females retaining half a dosage of the functional

gene in each cell. We postulate that the XCI pattern can

vary among the various human tissues, with some tissues

existing in which OFD1 escapes XCI and others existing

in which OFD1 undergoes XCI at variable degrees. In

mice, the gene undergoes XCI; therefore, female mice are

mosaics, with half of the cells completely devoid of Ofd1.

In mice, the severity of the phenotype, in addition to the

presence of phenotypic features not observed in humans,

could be caused by an absolute requirement in these

tissues for at least one functional copy of the gene within

each cell. Cystic kidney is observed in 100% of the cases

in mutant mice but in only 15% of patients. Owing to the

escape from XCI, human females might have sufficient

OFD1 protein for cilium assembly. It is possible that

cystogenesis results from a second somatic mutation in

kidney cells, in a similar manner to the model proposed

for autosomal dominant polycystic kidney [23].

Microphthalmia with linear skin-defects syndrome

The microphthalmia with linear skin defects syndrome

(MLS), also known as MIDAS, is a rare disorder described
orn wild type and (b) an Ofd1D4–5/+ female showing shortened skull

ys. Abnormal structures are indicated by arrowheads in (b).

palatoschisis. (d) Alizarin red (bone) and alcian blue (cartilage)

ey semithin sections of a mutant animal stained with toluidine blue

ating the glomerular origin of cysts. This figure was adapted with

Current Opinion in Genetics & Development 2006, 16:254–259
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in the early 1990s. It is characterized by variable degrees

of microphthalmia and by linear skin defects that are

usually located on the face and neck, and which are areas

of aplastic skin that subsequently heal to form hyperpig-

mented areas. Additional features include sclerocornea,

corneal opacities, agenesis of the corpus callosum, ven-

triculomegaly, microcephaly, mental retardation, infan-

tile seizures and, more rarely, cardiac anomalies. MLS is

predominantly observed in patients with deletions and

unbalanced translocations that involve the Xp22.3 region

and that result in monosomy for this region [24]. Aicardi

and Goltz syndromes share some similarities with MLS

syndrome, and a few reports have described MLS

patients with Xp22 deletions as possibly having Aicardi

or Goltz syndromes. However, they are now considered as

distinct disorders [25].

The molecular defect underlying MLS has not yet been

identified, although the holocytochrome c-type synthetase
(HCCS) transcript, a candidate gene contained within

the MLS critical-interval, has been recently implicated

in the male-lethality trait of MLS syndrome [26]. It has

been suggested that the pattern of X inactivation could

play a crucial role in the development of MLS [3] and in

the extreme intrafamilial variability of the phenotype

observed among sporadic cases [27–30]. The majority

of patients carrying Xp22.3 deletions show skewed XCI

[31], and the same holds true also for cases in which no

chromosomal abnormalities were found (B Franco,

unpublished). The observation that skewed XCI occurs

in rapidly dividing cells, such as blood cells, suggests that

there is a selective disadvantage for cells carrying the

mutated allele on their active X chromosomes. We

hypothesize that in heterozygous females, once the

XCI process initiates, cells that have inactivated the

normal X-chromosome would either die or suffer severe

problems. Therefore, the developmental problems that

are found in the MLS syndrome might be the result of the

different ability of the various tissues and organs to

remove these ‘suffering’ cells by cell-selection mechan-

isms. The extreme variability of phenotypes observed in

MLS is probably caused by differing degrees of XCI

skewing. Therefore, a milder phenotype might be caused

by complete skewing of X inactivation not only in blood

cells but also in tissues such as eye and skin.

Conclusions
Although the past four decades have witnessed major

advances in the understanding of the processes under-

lying dosage compensation between sexes in mammals,

the mechanism of XCI continues to puzzle investigators.

There is clear evidence that the expression of X-linked

mutations in females is regulated and highly influenced

by these processes. X-linked dominant male-lethal dis-

orders represent a paradigmatic example of such influ-

ences. The observations reviewed here emphasize the

importance of studying such diseases to understand the
Current Opinion in Genetics & Development 2006, 16:254–259
mechanisms by which XCI and cell selection modulate

the phenotypes resulting from mutations of X-linked

genes in female mammals.
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